Greboca  

Suport technique et veille technologique

Suport technique et veille technologique

Aujourd’hui, les grandes entreprises et administrations publiques hésitent entre continuer à utiliser des logiciels propriétaires ou basculer vers les Logiciels Libres. Pourtant, la plupart des logiciels libres sont capables de bien traiter les données issues des logiciels propriétaire, et parfois avec une meilleur compatibilité.

C’est alors la barrière de la prise en main qui fait peur, et pourtant...

Les logiciels libres

L’aspect « Logiciel Libre » permet une évolution rapide et une plus grande participation des utilisateurs. Les aides et tutoriels foisonnent sur Internet ou sont directement inclus dans le logiciel lui-même.

Enfin, les concepteurs sont plus proches des utilisateurs, ce qui rend les logiciels libres plus agréable à utiliser et conviviaux.

Grâce à la disponibilité des logiciels libres, vous trouverez facilement des services de support techniques et la licence n’est plus un frein à l’utilisation de ces logiciels par votre personnel.

Notre support technique concerne essentiellement les logiciels libres, que ce soit sous forme de services ponctuels ou de tutoriels.

Framablog – La route est longue mais la voie est libre…  -  IA : les machines du doute

 -  23 février - 

Cet article est une republication, avec l’accord de l’auteur, Hubert Guillaud. Il a été publié en premier le 21 mai 2024 sur le site Dans Les Algorithmes sous licence CC BY-NC-SA.


 

Il va nous falloir apprendre à travailler avec l’instabilité des machines.

 

 

 

 

 

 

 

Quand on fait réaliser un calcul par une machine, aussi complexe soit-il, la plupart du temps, ce qui est garanti, c’est l’assurance du résultat, sa stabilité, sa performance. C’est le principe d’une calculatrice ou d’un logiciel : on a au bout le résultat et les fonctions prévues. Dans un système de calcul comme les impôts, on prend des données et des règles de calcul – qui peuvent être perfectibles, certes – et on obtient des résultats sans ambiguïtés, pour autant que les données et les règles de calcul n’en comportent pas – ce qui n’est déjà pas si évident à réussir ! Dans un jeu vidéo, les personnages non joueurs suivent des scripts dont ils ne peuvent pas sortir, ce qui limite certes considérablement l’interaction, mais la borne et rend le jeu possible. Le monde de l’informatique est longtemps resté celui de la maîtrise de bout en bout des processus.

Les choses ont changé avec les systèmes d’IA. Avec certaines fonctionnalités, nous avons pris l’habitude d’un taux de performance. Pour la reconnaissance d’objets par exemple, le résultat n’est pas automatique comme avec les calculatrices. Le niveau de fiabilité n’est pas optimal, mais nous sommes capables de composer avec le fait que les machines soient capables de reconnaître tels types d’objets à 95 ou 98 %. Ce n’est pas une performance absolue, mais elle permet malgré tout d’optimiser un processus en connaissant par avance son taux d’erreur, de l’accepter ou le refuser. Et donc de décider en fonction. On peut créer une chaîne de tri d’objets en sachant que ce tri va fonctionner à 95 % et accepter ou pas la déperdition qui en résulte.

L’IA générative est plus instable encore. Les résultats qu’elle produit ne sont pas reproductibles. Un même prompt ne produira pas exactement le même résultat ou la performance pourra dépendre de la complexité que la machine doit adresser. Extraire des données d’un document, comme les noms des personnes ou leurs liens de filiation peut dépendre à la fois de la lisibilité des documents et de la complexité des relations entre ces personnes. Si le système peut être performant, reste à identifier les cas où il dysfonctionne et savoir si ces erreurs sont acceptables ou rédhibitoires et si l’on peut clairement séparer les cas où la performance est forte, de ceux où elle ne l’est pas. L’enjeu à évaluer l’incertitude des réponses apportées est une question centrale.

Cette perspective d’une fiabilité différentielle dessine un nouveau rapport aux machines. D’un coup, notre assurance dans leurs résultats doit être mise en doute. Ce qui explique qu’il soit difficile d’automatiser certaines tâches avec l’IA. Là où l’on pouvait se fier aux calculs, désormais, le doute est légitime. Alors qu’un robot était capable de remplacer une personne pour une tâche spécifique sur une chaîne d’assemblage, le chatbot conversationnel qui répond à un administré ou à un joueur va devoir être surveillé. Certaines de leurs performances sont excellentes bien sûr, mais parfois elles sont capables de sous-performances dramatiques. Comme le dit le sociologue Yann Ferguson, « Jusqu’à maintenant, l’introduction des machines a apporté de la sécurité et de la stabilité. Leur force résidait dans leur prévisibilité ». Ce n’est plus le cas. Désormais, les résultats doivent être accompagnés, surveillés, contrôlés et c’est là un nouveau défi pour ceux qui cherchent à intégrer l’IA générative à leurs procédures.

Mais, au-delà de l’IA générative, ce que dessine ce changement de paradigme, c’est un autre rapport aux machines : voilà qu’on ne peut plus leur faire entièrement confiance. Non seulement, il faut se défier des biais des données, des règles de calculs utilisées, mais désormais de leurs résultats mêmes. Et la grande difficulté consiste à savoir là où on peut leur faire confiance et là où on ne doit pas leur faire confiance.

Un imagier pour enfants avec des animaux. Certains animaux sont des fusions, d'autres sont mal nommés : Le cochon est appelé « Vache », ou ce qu'il semble être la fusion entre un chat et un chien un « cochon ».

Exemple d’un imagier pour enfant sur les animaux de la ferme conçu par chatGPT…
… qui n’est pas sans poser problèmes. Tweet de Tristan Mendès France.

 

Les technologies ont toujours eu pour ambition de nous faire gagner en productivité, avec pour enjeu de pouvoir remplacer des hommes par des procédures avec un niveau de confiance très élevé. On est en train de passer d’une technique qui produit une certaine forme de rationalité qu’on était capable d’évaluer simplement à une technique qui n’en produit plus ou pas nécessairement ou pas principalement et sans qu’on soit toujours capable d’évaluer sa fiabilité. C’est un changement de paradigme important qui nous oblige à ne plus être certain de la réponse produite par la machine, de ne plus pouvoir lui faire entièrement confiance. L’IA nous demande désormais de composer avec le doute, de remettre en question nos assurances. Nous avons un nouveau rapport aux machines à imaginer et il nous invite à douter d’elles.

C’est une très bonne nouvelle, vous ne trouvez pas ?

par Framasoft

Framablog – La route est longue mais la voie est libre…

Les mythes de l’IA

 -  2 mars - 

Cet article est une republication, avec l’accord de l’auteur, Hubert Guillaud. Il a été publié en premier le 02 octobre 2024 sur le site Dans Les (...)


Prestidigitateur ou sorcier ?

 -  24 février - 

Aujourd’hui, Gee, qui fête actuellement les 10 ans de son blog Grise Bouille avec un livre best of et un site anniversaire, vous propose une petite (...)


Khrys’presso du lundi 24 février 2025

 -  24 février - 

Comme chaque lundi, un coup d’œil dans le rétroviseur pour découvrir les informations que vous avez peut-être ratées la semaine dernière.Tous les (...)


Comprendre ce que l’IA sait faire et ce qu’elle ne peut pas faire

 -  16 février - 

Cet article est une republication, avec l’accord de l’auteur, Hubert Guillaud. Il a été publié en premier le 10 octobre 2024 sur le site Dans Les (...)


Framasoft rejoint HIATUS, la coalition critique de l’IA

 -  7 février - 

Le sujet de l’intelligence artificielle est omniprésent dans les discours médiatiques et politiques. Et il serait difficile de nier que ses impacts (...)